

Vibro-Acoustic Design Principles for High Power Ultrasound

Örjan Johansson och Taraka Pamidi Luleå University of Technology

Present projcts and applications

LULEÅ UNIVERSITY OF TECHNOLOGY

Ultrasound Processing

- Lower process temperatures
- Better yield and quality
- Improve energy efficiency
- Reduce number of unit operations
- Up-scaling
- Limited process volumes
- Robustness and stabillity
- Difficult to predict

Objectives and Goals

Improve process efficiency and yield based on hydrodynamic and acoustic cavitation

- 1) Develop a scalable reactor concept for process intensification
- 2) Methodology for numerical and experimental optimization
- 3) Better energy efficiency compared to traditional unit operations
- 4) Improving yield and quality

Demonstration

Ultrasonic Reactor

Cavitation and Acoustic Maximum

Bubble sizes are frequency dependent!

OF TECHNOLOGY

Why a tube structure?

- Alows flow
- Common engineering structure
- *Might be extremely noisy*
- Shockwaves and extreme vibrations
- Natural focusing effect
- Difficult to predict sound and vibration

THE NORTHERNMOST UNIVERSITY of Technology in Scandinavia

"Linearized on a saddle point"

LULEÅ UNIVERSITY OF TECHNOLOGY

Structural acoustic optimization

A stepwise and multivariate approach built upon:

- a) Wave speeds in fluids and solid materials
- b) Fluid resonances in a cylindrical volume
- c) Longitudinal resonances in a shell structure
- d) Bending wave resonances in a free cylindrical shell
- e) Critical frequency of a bending wave in a cylinder wall

Goal: Combine several resonances at one frequencies

a) wave speeds in fluids and solid materials

THE NORTHERNMOST UNIVERSITY of Technology in Scandinavia

b) Fluid eigenmodes inside a cylinder

- Cross-sectional eigenmodes
- Water filled cylinder
- D_i=90mm.
- Eigenfrequency:

$$f_{l,m,n} = \frac{c}{2} \sqrt{\left(\frac{2\beta_{m,n}}{\pi D_i}\right)^2 + \left(\frac{l}{L_f}\right)^2}$$

c) Longitudinal resonances in a shell structure

"Breathing" mode

"Complex" mode

$$f_1 = \frac{1}{\pi D_M} \sqrt{\frac{E}{\rho(1-v^2)}}$$

$$f_{n,l} = \sqrt{\frac{E}{\rho(1-v^2)} \left[\left(\frac{n}{\pi D_M}\right)^2 + \left(\frac{l}{2L}\right)^2 \right]}$$

 $f_{1,0}$ = 21000 Hz (SS; D_M=90mm) Avoid some length intervals!

d) Bending wave resonances in a cylindrical shell

$$f_{l,m} = \frac{c_B}{2\pi} \sqrt{\left(\frac{l\pi}{L_s}\right)^2 + \left(\frac{m}{a_M}\right)^2}$$

Bending wave speed (c_B) depends on frequency, thickness and material

$$c_B^2 = 2\pi f \sqrt{\frac{Eh^2}{12\rho(1-v^2)}}$$

c_B=1550 m/s; L_s=1120 mm; a_M = 50mm; m=3; I=22

$$f_{22,3} = 21 \text{kHz}$$

e) Critical frequency - bending wave – "free" cylinder

$$h = \frac{c_B^2}{2\pi f_c} \sqrt{\frac{12\rho(1-\nu^2)}{E}}$$

 $h \ll \lambda_B$ and $f > f_0$

 $c_B \ge c_{fluid}$ or $\lambda_B \ge \lambda_{fluid} = 74$ mm at 21 kHz give: **h ≥ 12 mm**

Design Methodology

Design parameters:

- I. Temperature (T)
- II. The diameter of fluid volume(D_i)
- III. Length of fluid volume (L_f)
- IV. Wall thickness of the surrounding tube (*h*)
- V. Length of the tube (L_s)
- VI. Fluid properties of the inner tube *

* The design goal is to make the reactor design as robust as possible with respect to losses in the central volume

Coupled FE-Modelleing Comsol Multiphysics ®

FEM-optimized reactor geometry

Excitation by Sonotrodes

3.6 µm at 24 kHz give acc ≈ 8000g

9 Sonotrodes & 2 Frequencies

3 x 22 kHz

6 x 37kHz

Experimental verification

Mission Impossible?

Verification measurements

THE NORTHERNMOST UNIVERSITY of Technology in Scandinavia

File: pur sin with three sonos hot water.fft

Optimum cavitation intensity?

Parameters Influencing Quality

- 1. Excitation frequency (multiple)
- 2. Flow characteristics (initiate bubbles and mixing)
- 3. Process temperature (typically lower)
- 4. Static pressure (increase cavitation intensity)
- 5. Signal characteristics (patented signal)
- 6. Cavitation intensity (optimized by electrical power)
- 7. Pulp characteristics (concentration and size distribution)
- 8. Lossfactors (amplification)

Experimental set-up for metal extraction

Scaleable Reactor Concept

Conclusions

- I. The reactor concept is developed by an iterative procedure combining multi-physic simulation and experimental optimization
- II. The reactor vibration response gives pressure maximum and transient cavitation in the flow through zone
- III. The reactor concept is **scalable** and **adaptable** to various process industry applications

