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Ultrasound Processing 
• Lower process temperatures 
• Better yield and quality 
• Improve energy efficiency 
• Reduce number of unit operations 
− Up-scaling 
− Limited process volumes 
− Robustness and stabillity 
− Difficult to predict 
 



Objectives and Goals 

1) Develop a scalable reactor concept for process intensification 

2) Methodology for numerical and experimental optimization 

3) Better energy efficiency compared to traditional unit operations 

4) Improving yield and quality 

Improve process efficiency and yield based on 
hydrodynamic and acoustic cavitation 



Demonstration 



Cavitation and Acoustic Maximum 

Bubble sizes are frequency dependent! 



Why a tube structure? 
• Alows flow 
• Common engineering structure 
• Might be extremely noisy 
• Shockwaves and extreme vibrations 
• Natural focusing effect 
• Difficult to predict sound and vibration 



Coupled and Non-Linear Problem 

“Linearized on a saddle point” 
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Impededance matching of a resonant system, whith a minimum of coupling losses to give an energy efficient transfer of electric power to a high cavitation intensity



A stepwise and multivariate approach built upon: 
a) Wave speeds in fluids and solid materials  
b) Fluid resonances in a cylindrical volume 
c) Longitudinal resonances in a shell structure  
d) Bending wave resonances in a free cylindrical shell  
e) Critical frequency of a bending wave in a cylinder wall 

Structural acoustic optimization  

Goal: Combine several resonances at one frequency 



a) wave speeds in fluids and solid materials 
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”3D” 
Solid or fluid 

”2D” 
Plate or Shell 

”1D” 
Beam 

Stainless steel:      5770 m/s                   5244m/s        5011m/s 
 
Water (20°C):      1481 m/s 



• Cross-sectional eigenmodes 
• Water filled cylinder  
• Di=90mm.  
• Eigenfrequency: 

b) Fluid eigenmodes inside a cylinder 
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l, m, and n are the mode numbers in the axial, azimuthal and radial directions respectively, c is the speed of sound in the fluid, Lf is the length of the cylindrical fluid volume, Di is the inner diameter and βm,n represent values for different cross-sectional mode shapes defined by the maximum of the Bessel functions of first order.



c) Longitudinal resonances in a shell structure  
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”Breathing” mode 
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”Complex” mode 

X 
f1,0 = 21000 Hz (SS; DM=90mm) 

Avoid some length intervals! 



d) Bending wave resonances in a cylindrical shell  

cB=1550 m/s; Ls=1120 mm; aM = 50mm; m=3; l=22 
 

f22,3 = 21kHz  
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Bending wave speed (cB) depends on frequency, thickness and material   
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e) Critical frequency - bending wave – “free” cylinder  
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λB 

λz 

λx 

cB ≥ cfluid   or    λB ≥ λfluid = 74 mm at 21 kHz give: h ≥ 12 mm  

h << λB   and   f > f0  
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Design parameters: 
I. Temperature (T) 
II. The diameter of fluid volume(Di) 
III. Length of fluid volume (Lf) 
IV.Wall thickness of the surrounding tube (h) 
V. Length of the tube (Ls) 
VI.Fluid properties of the inner tube * 
* The design goal is to make the reactor design as robust as possible with 
respect to losses in the central volume 

Design Methodology 



Geometrical Design 
21.8 kHz 

37.1 kHz 
53.8 kHz 

Simulated Pressure Response 

Coupled FE-Modelleing 
Comsol Multiphysics ® 

Critical Boundary 
Conditions 

“Flow through” 
suspension 

with absorption 

Piezo Electrical 
Properties 



FEM-optimized reactor geometry 

21.8 kHz 

37.1 kHz 

53.8 kHz 

SPL in  Water Volume Structural vibrations 



Excitation by Sonotrodes 

3.6 µm at 24 kHz give acc ≈ 8000g 



9 Sonotrodes & 2 Frequencies 

3 x 22 kHz 

6 x 37kHz 



Experimental verification 



Mission Impossible? 

Impedance matching 
Tuned by input power 



Verification measurements 

185 dB 18? dB 18? dB 



Optimum cavitation intensity? 

fopt 

1.5fopt 

”Listening” for control 



Parameters Influencing Quality 
1. Excitation frequency (multiple) 
2. Flow characteristics (initiate bubbles and mixing) 
3. Process temperature (typically lower) 
4. Static pressure (increase cavitation intensity) 
5. Signal characteristics (patented signal) 
6. Cavitation intensity (optimized by electrical power) 
7. Pulp characteristics (concentration and size distribution) 
8. Lossfactors (amplification) 
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Tappvatten 

Uppvärmningsbar 
behållare för 

hetvatten eller 
massa 

Avluftnings-
rör 

Pump 48 lit/min 
2 bar övertryck 

Extern 
påfyllning 

Dysa, med valfri 
röranslutning 

Rördimension 
¾ tum eller ½ tum 

20190416 
Örjan Johansson 

Luleå tekniska universitet 

System for 
Ultrasound 
treatment 
of liquid 
solvents 

II. Acoustic 
controlled 
cavitation 

I. Hydrodynamic 
initiation of 
cavitation 
bubbles 



Experimental set-up for metal extraction 
PVC 
pipe 

Sonotrodes 

1.5mm
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Scaleable Reactor Concept 



Conclusions 
I. The reactor concept is developed  by an 

iterative procedure combining multi-physic 
simulation and experimental optimization 

II. The reactor vibration response gives 
pressure maximum and transient cavitation in 
the flow through zone  

III. The reactor concept is scalable and 
adaptable to various process industry 
applications  
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