

Shock Finder How to detect bearing wear/damages at low speeds

Brand of ACOEM

Automatic shock detection filter

and algorithm providing a warning at a very early stage

Why the Shock Finder?

Limitations of analysis in the frequency domain

- Not adapted to low speed components (low energy phenomenon)
- Diagnosis limitations:
 - Modulation vs. periodic shocks: same pattern on the spectra!
 - Multiple pits on a bearing: only 1 harmonic family

Low speed shafts: Hidden shocks

Low speed shafts: Limitations of manual time waveform analysis

2000Hz high-pass filtering

Where are the shocks??

Low speed shafts: Automatic shock detection with SFI

Shock Finder How does it work?

1 – Time waveform acquisition

Detection of abnormal periodic shocks: Need to capture several rotations

Sampling frequency: > 2.4 max frequency signal (Shannon) <u>≠ of shocks periodicity!!</u> Bearing defect = up to 10kHz analysis → 25,6 KHz sampling frequency

2 – Automatic filter definition with a spectral Kurtosis

3 – Filtering of the signal: Remove the normal vibration

4 – Shock counting & alarm (MVX)

• SFI Alarm is validated depending on:

- The **total number** of flags that occurred during the alarm validation period
- The number of flags raised <u>in a successive way</u> during the alarm validation period

Shock Finder How to use it?

I. SFI Filter as a diagnosis tool in Vibgraph

2. SFI Indicator as early fault detection indicator

Monitoring & Automatic Shock counting

Used automatically by the automatic diagnosis

Χ

Solution 3. SFI as diagnosis tool in complement to other techniques

Good complement to classic techniques (Envelope, Kurtosis...)

Shock Finder *Few examples*

Wind Turbine (MVX) - Main Bearing Defect (1/4)

Wind Turbine (MVX) - Main Bearing Defect (2/4)

	Parameters and Signals Status							
Operating	Rot Sp - F	Power	Wind					
Parameters	13.9	6.48	15.7					
Filter @ All	C Others	s 🔽 H	Hard	📝 Soft	V	nhibited	📝 Not n	nonitored
PSS	Main beal	Planetary	2nd Plan	Shaft3	Shaft4 A	Shaft4 R	GEN_DE	GEN ND
OVL ACC	0.025	0.104	0.073	0.211	0.206	0.215	0.252	0.184
OVL VEL	0.426	0.684	0.829	1.20	0.770	1.68	3.51	2.14
En-LF	0.014	0.030	0.030	0.059	0.036	0.091	0.044	0.029
En-MF	0.019	0.097	0.064	0.190	0.184	0.169	0.029	0.027
En-HF	0.0066	0.024	0.025	0.072	0.091	0.102	0.246	0.177
Kurtosis	0	0	0	0	0	0	0	2.00
Shock Finder								
En-Env	39.2	36.9	37.3	36.9	36.1	35.9	39.0	36.9
FO					0.073	0.533	3.09	1.84
FZ		0.343	0.275	0.153	0.316	0.204		

SEMA-TEC

Shocks are clearly visible

Wind Turbine (MVX) - Main Bearing Defect (3/4)

Wind Turbine (MVX) - Main Bearing Defect (4/4)

	Parameters and Signals Status								
Operating	Rot Sp	Power	Wind						
Parameters	14.4	10.00	18.5						
Filter @ All	C Other:	s 🔽 H	Hard	📝 Soft	v	Inhibited	📝 Not n	nonitored	
PSS	Main bea	Planetary	2nd Plan	Shaft3	Shaft4 A	Shaft4 R	GEN_DE	GEN NDE	
OVL ACC	0.029	0.102	0.070	0.229	0.224	0.239	0.226	0.180	
OVL VEL	0.864	0.924	1.28	1.44	1.07	1.76	6.10	4.09	
En-LF	0.013	0.029	0.027	0.049	0.057	0.097	0.068	0.050	
En-MF	0.024	0.096	0.058	0.209	0.182	0.181	0.040	0.033	
En-HF	0.0084	0.030	0.028	0.083	0.115	0.120	0.213	0.170	
Kurtosis	1.00	0	0	0	0	0	0	5.00	
Shock Finder									
En-Env	36.2	36.3	36.3	36.6	36.3	35.9	38.8	37.4	
FO					0.072	0.254	4.95	3.11	
FZ		0.194	0.192	0.196	0.126	0.302			

Wind Turbine (MVX) – Gear defect

Shocks corresponding to inner ring defect on gearbox

	Parameters and Signals Status							
Operating	Rot Sp	Power	Wind					
Parameters	1145	294	5.00					
Filter @ All	C Other:	s 🔽 H	Hard	📝 Soft	V	Inhibited	📝 Not n	nonitored
PSS	Main bea	2le Main	Planetary	Shaft2	Shaft3 A	Shaft4 R	GEN_DE	GEN NDE
OVL ACC	0.015	0.0097	0.127	0.136	0.151	0.172	0.220	0.275
OVL VEL	0.241	0.173	0.227	0.433	0.353	0.598	0.488	0.782
En-LF	0.0090	0.0050	0.0075	0.0092	0.0096	0.010	0.016	0.024
En-MF	0.011	0.0054	0.068	0.087	0.104	0.075	0.043	0.041
En-HF	0.0065	0.0065	0.100	0.096	0.104	0.152	0.189	0.272
Kurtosis	0	3.00	0	0	0	0	0	0
En-Env	36.2	35.9	36.2	37.0	36.6	36.5	37.7	36.5
Shock Finder								
FO					0.229	0.347	0.108	0.300
FZ			0.025	0.0098	0.048	0.084		

Hydro Turbine (MVX)

- When trash builds up in front of the water inlet it causes the flow to be nonsymetric, and the gearbox becomes out of alignment. This causes the impacts.
- The High Speed Planet Passage frequency is 16.1 Hz
 Hz and that is the repetition rate of the impacts.

Laminating machine (MVX)

Bearing defect

Measurement on a train gearbox (Vibgraph filter)

Bearing defect

Shock Finder Conclusion

Shock Finder: The benefits

- Reliable detection for low speed and variable process (speed, load)
- Reliable detection in the low frequency domain (gears)
- **Easy to use**: No need to define filters parameters
- Cost effective installation:
 - Use of standard accelerometer
 - Only one sensor for both unbalance phenomena and ball bearing defect
 - No need for phase measurement with a tachometer
- A big + for diagnosis purposes: easy confirmation of the results shown by classic techniques (Envelope, Kurtosis...)

SEMA-TEC Representerar OneProd i Sverige!

